
concise Documentation

Elliot Chance

Oct 19, 2018

Contents

1 Installation 3
1.1 Requirements . 3
1.2 Composer . 3

2 Writing Tests 5
2.1 Simple Example . 5
2.2 Verify vs Assert . 5

3 Assertions 7
3.1 Arrays . 7
3.2 Basic . 8
3.3 Booleans . 8
3.4 Date and Time . 8
3.5 Exceptions . 8
3.6 Files . 8
3.7 Hashing (Cryptography) . 9
3.8 Numbers . 11
3.9 Objects and Classes . 11
3.10 Regular Expressions . 11
3.11 Strings . 11
3.12 Types . 12
3.13 URLs . 12

4 Running Tests 13
4.1 The Concise CLI . 13
4.2 Continuous Integration (CI) . 13

5 Mocking 15
5.1 Creating Mocks . 15
5.2 Verifying Mocks . 18
5.3 Exposing . 18
5.4 Stubbing . 20
5.5 Expectations . 21
5.6 Actions . 23
5.7 Properties . 25
5.8 Limitations . 26

i

6 Syntaxes 27
6.1 What is a Syntax? . 27
6.2 Restricting Data Types . 28
6.3 Special Data Types . 28

7 Modules 31
7.1 Creating a Module . 31
7.2 Loading a Module . 32
7.3 Testing Modules . 32
7.4 IDE and Code Completion . 32

8 Integrations 35
8.1 Pho . 35
8.2 PHPUnit . 36
8.3 Other Frameworks . 36

9 Changelog 37

ii

concise Documentation

Concise is unit testing framework that uses plain English and minimal code. It extends and is fully compatible with
existing PHPUnit projects.

Highlights include:

• 100% compatible with PHPUnit, no changes required. You may use as many features as you wish.

• Much better mocking framework with a lot less typing.

• Huge array of assertions to save on boilerplate code.

• Assert and verify are supported.

Contents 1

https://travis-ci.org/elliotchance/concise
https://coveralls.io/r/elliotchance/concise?branch=master
mocking.html
assertions.html
writing-tests.html#verify-vs-assert

concise Documentation

2 Contents

CHAPTER 1

Installation

1.1 Requirements

Concise requires PHPUnit which is included as a dependency of concise. Concise is compatable and tested against all
minor releases of PHPUnit starting with with 4.0. Builds can be found at Travis CI with different COMPOSER values.

PHP versions 5.3 to 5.6 are supported. However, HHVM is not yet supported.

1.2 Composer

Concise is provided through Composer. The easiest way to include concise as a development dependency for your
current project:

composer require-dev elliotchance/concise

Alternatively you can add it to your composer.json file:

{
"require-dev": {

"elliotchance/concise": "~2.0"
}

}

3

https://travis-ci.org/elliotchance/concise
https://travis-ci.org/elliotchance/concise
https://github.com/elliotchance/concise/pull/223
https://getcomposer.org

concise Documentation

4 Chapter 1. Installation

CHAPTER 2

Writing Tests

If you’re familar with PHPUnit then there isn’t much to explain here. You may use all the same processes and
constructs as PHPUnit - the only difference is the class you extend from will be Concise\Core\TestCase.

2.1 Simple Example

class MyTest extends TestCase
{

public function testSomeStuff()
{

$result = 100 + 23;
$this->assert($result)->exactlyEquals(123);

$a = ['foo' => 'bar'];
$this->assertArray($a)->isAssociative;
$this->assertArray($a)->hasKey('foo');

}
}

Assertions are made from chaining words and values together. The chaining creates the syntax for the assertion:

// array ? has key ?
$this->assertArray($a)->hasKey('foo');

This syntax is used to find the assertion. If the assertion fails it will be able to render the data and the assertion in a
pretty way.

2.2 Verify vs Assert

verify is a stand-in replacement for assert that does not stop the execution of the current test. This is useful when
testing several values where a failure would not cause an error:

5

https://phpunit.de

concise Documentation

class MyTest extends TestCase
{

public function testVerify()
{

$this->verify(1)->equals(2);
$this->verify(2)->equals(2);
$this->verify(3)->equals(2);

}
}

6 Chapter 2. Writing Tests

CHAPTER 3

Assertions

3.1 Arrays

• array array count is int - Assert an array has a specific number of elements.

• array array count is not int - Assert an array does not have a specific number of elements.

• array array does not have item array - Assert an array does not have key and value item.

• array array does not have key int|string - Assert an array does not have a key.

• array array does not have keys array -

• array array does not have value mixed - Assert an array does not have any occurrences of the given value.

• array array has item array - Assert an array has key and value item.

• array array has items array - Assert an array has all key and value items.

• array array has key int|string - Assert an array has key, returns value.

• array array has keys array - Assert an array has several keys in any order.

• array array has value mixed - Assert an array has at least one occurrence of the given value.

• array array has values array - Assert an array has several values in any order.

• array array is associative - Assert an array is associative.

• array array is empty - Assert an array is empty (no elements).

• array array is not associative - Assert an array is not associative.

• array array is not empty - Assert an array is not empty (at least one element).

• array array is not unique - Assert that an array only has at least one element that is repeated.

• array array is unique - Assert that an array only contains unique values.

7

concise Documentation

3.2 Basic

• mixed does not equal mixed - Assert two value do not match with no regard to type.

• mixed does not exactly equal mixed - Assert two values are of exactly the same type and value.

• mixed equals mixed - Assert values with no regard to exact data types.

• mixed exactly equals mixed - Assert two values match data type and value.

• mixed is not the same as mixed - Assert two values are of exactly the same type and value.

• mixed is the same as mixed - Assert two values match data type and value.

3.3 Booleans

• mixed is false - Assert value is false.

• mixed is falsy - Assert a value is a false-like value.

• mixed is true - Assert a value is true.

• mixed is truthy - Assert a value is a non false-like value.

3.4 Date and Time

• date int|string|DateTime is after int|string|DateTime - A date/time is after another date/time, returns original date
in the same format as provided.

• date int|string|DateTime is before int|string|DateTime - A date/time is before another date/time, returns original
date in the same format as provided.

3.5 Exceptions

• closure callable does not throw class - Assert that a specific exception is not thrown.

• closure callable does not throw exception - Assert that no exception is thrown.

• closure callable throws class - Assert a specific exception was thrown.

• closure callable throws anything except class - Assert any exception except a specific one was thrown.

• closure callable throws exactly class - Assert a specific exception was thrown.

• closure callable throws exception - Assert an exception was thrown.

3.6 Files

• file string does not equal string - Compare string value with the contents of a file.

• file string equals string - Compare string value with the contents of a file.

8 Chapter 3. Assertions

concise Documentation

3.7 Hashing (Cryptography)

• hash mixed is a valid adler32 - Assert hash is an 8 digit hexadecimal.

• hash mixed is a valid crc32 - Assert hash is an 8 digit hexadecimal.

• hash mixed is a valid crc32b - Assert hash is an 8 digit hexadecimal.

• hash mixed is a valid fnv132 - Assert hash is an 8 digit hexadecimal.

• hash mixed is a valid fnv164 - Assert hash is a 16 digit hexadecimal.

• hash mixed is a valid fnv1a32 - Assert hash is an 8 digit hexadecimal.

• hash mixed is a valid fnv1a64 - Assert hash is a 16 digit hexadecimal.

• hash mixed is a valid gost - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid gost-crypto - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid haval128 - Assert hash is a 32 digit hexadecimal.

• hash mixed is a valid haval160 - Assert hash is a 40 digit hexadecimal.

• hash mixed is a valid haval192 - Assert hash is a 48 digit hexadecimal.

• hash mixed is a valid haval224 - Assert hash is a 56 digit hexadecimal.

• hash mixed is a valid haval256 - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid joaat - Assert hash is an 8 digit hexadecimal.

• hash mixed is a valid md2 - Assert hash is a 32 digit hexadecimal.

• hash mixed is a valid md4 - Assert hash is a 32 digit hexadecimal.

• hash mixed is a valid md5 - Assert hash is a 32 digit hexadecimal.

• hash mixed is a valid ripemd128 - Assert hash is a 32 digit hexadecimal.

• hash mixed is a valid ripemd160 - Assert hash is a 40 digit hexadecimal.

• hash mixed is a valid ripemd256 - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid ripemd320 - Assert hash is an 80 digit hexadecimal.

• hash mixed is a valid salsa10 - Assert hash is a 128 digit hexadecimal.

• hash mixed is a valid salsa20 - Assert hash is a 128 digit hexadecimal.

• hash mixed is a valid sha1 - Assert hash is a 40 digit hexadecimal.

• hash mixed is a valid sha224 - Assert hash is a 56 digit hexadecimal.

• hash mixed is a valid sha256 - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid sha384 - Assert hash is a 96 digit hexadecimal.

• hash mixed is a valid sha512 - Assert hash is a 128 digit hexadecimal.

• hash mixed is a valid snefru - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid snefru256 - Assert hash is a 64 digit hexadecimal.

• hash mixed is a valid tiger128 - Assert hash is a 32 digit hexadecimal.

• hash mixed is a valid tiger160 - Assert hash is a 40 digit hexadecimal.

• hash mixed is a valid tiger192 - Assert hash is a 48 digit hexadecimal.

3.7. Hashing (Cryptography) 9

concise Documentation

• hash mixed is a valid whirlpool - Assert hash is a 128 digit hexadecimal.

• hash mixed is not a valid adler32 - Assert hash is not an 8 digit hexadecimal.

• hash mixed is not a valid crc32 - Assert hash is not an 8 digit hexadecimal.

• hash mixed is not a valid crc32b - Assert hash is not an 8 digit hexadecimal.

• hash mixed is not a valid fnv132 - Assert hash is not an 8 digit hexadecimal.

• hash mixed is not a valid fnv164 - Assert hash is not a 16 digit hexadecimal.

• hash mixed is not a valid fnv1a32 - Assert hash is not an 8 digit hexadecimal.

• hash mixed is not a valid fnv1a64 - Assert hash is not a 16 digit hexadecimal.

• hash mixed is not a valid gost - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid gost-crypto - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid haval128 - Assert hash is not a 32 digit hexadecimal.

• hash mixed is not a valid haval160 - Assert hash is not a 40 digit hexadecimal.

• hash mixed is not a valid haval192 - Assert hash is not a 48 digit hexadecimal.

• hash mixed is not a valid haval224 - Assert hash is not a 56 digit hexadecimal.

• hash mixed is not a valid haval256 - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid joaat - Assert hash is not an 8 digit hexadecimal.

• hash mixed is not a valid md2 - Assert hash is not a 32 digit hexadecimal.

• hash mixed is not a valid md4 - Assert hash is not a 32 digit hexadecimal.

• hash mixed is not a valid md5 - Assert hash is not a 32 digit hexadecimal.

• hash mixed is not a valid ripemd128 - Assert hash is not a 32 digit hexadecimal.

• hash mixed is not a valid ripemd160 - Assert hash is not a 40 digit hexadecimal.

• hash mixed is not a valid ripemd256 - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid ripemd320 - Assert hash is not a 80 digit hexadecimal.

• hash mixed is not a valid salsa10 - Assert hash is not a 128 digit hexadecimal.

• hash mixed is not a valid salsa20 - Assert hash is not a 128 digit hexadecimal.

• hash mixed is not a valid sha1 - Assert hash is not a 40 digit hexadecimal.

• hash mixed is not a valid sha224 - Assert hash is not a 56 digit hexadecimal.

• hash mixed is not a valid sha256 - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid sha384 - Assert hash is not a 96 digit hexadecimal.

• hash mixed is not a valid sha512 - Assert hash is not a 128 digit hexadecimal.

• hash mixed is not a valid snefru - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid snefru256 - Assert hash is not a 64 digit hexadecimal.

• hash mixed is not a valid tiger128 - Assert hash is not a 32 digit hexadecimal.

• hash mixed is not a valid tiger160 - Assert hash is not a 40 digit hexadecimal.

• hash mixed is not a valid tiger192 - Assert hash is not a 48 digit hexadecimal.

• hash mixed is not a valid whirlpool - Assert hash is not a 128 digit hexadecimal.

10 Chapter 3. Assertions

concise Documentation

3.8 Numbers

• number is between number and number - A number must be between two values (inclusive), returns value.

• number is greater than number - A number is greater than another number.

• number is greater than or equal to number - A number is greater than or equal to another number.

• number is less than number - A number is less than another number.

• number is less than or equal to number - A number is less than or equal to another number.

• number is not between number and number - A number must not be between two values (inclusive).

• number is not within number of number - Assert two values are not close to each other.

• number is within number of number - Assert two values are close to each other.

3.9 Objects and Classes

• object|class is an instance of class - Assert an objects class or subclass.

• object|class is not an instance of class - Assert than an object is not a class or subclass.

• object object does not have property string - Assert that an object does not have a property.

• object object has property string - Assert that an object has a property. Returns the properties value.

3.10 Regular Expressions

• string string does not match regex - Assert that a string does not match a regular expression.

• string string matches regex - Assert that a string matches a regular expression.

3.11 Strings

• string mixed does not end with mixed - Assert a string does not end with another string.

• string mixed does not start with mixed - Assert a string does not not start (begin) with another string.

• string string contains string - A string contains a substring. Returns original string.

• string string contains case insensitive string - A string contains a substring (ignoring case-sensitivity). Returns
original string.

• string string does not contain string - A string does not contain a substring. Returns original string.

• string string does not contain case insensitive string - A string does not contain a substring (ignoring case-
sensitivity). Returns original string.

• string string ends with string - Assert a string ends with another string.

• string string is empty - Assert a string is zero length.

• string string is not empty - Assert a string has at least one character.

• string string starts with string - Assert a string starts (begins) with another string.

3.8. Numbers 11

concise Documentation

3.12 Types

• mixed is a bool - Assert a value is true or false.

• mixed is a boolean - Assert a value is true or false.

• mixed is a number - Assert that a value is an integer or floating-point.

• mixed is a string - Assert value is a string.

• mixed is an array - Assert a value is an array.

• mixed is an int - Assert value is an integer type.

• mixed is an integer - Assert value is an integer type.

• mixed is an object - Assert value is an object.

• mixed is not a bool - Assert a value is not true or false.

• mixed is not a boolean - Assert a value is not true or false.

• mixed is not a number - Assert that a value is not an integer or floating-point.

• mixed is not a string - Assert a value is not a string.

• mixed is not an array - Assert a value is not an array.

• mixed is not an int - Assert a value is not an integer type.

• mixed is not an integer - Assert a value is not an integer type.

• mixed is not an object - Assert a value is not an object.

• mixed is not null - Assert a value is not null.

• mixed is not numeric - Assert value is not a number or string that represents a number.

• mixed is null - Assert a value is null.

• mixed is numeric - Assert value is a number or string that represents a number.

3.13 URLs

• url string has fragment string - URL has fragment.

• url string has host string - URL has host.

• url string has password string - URL has password.

• url string has path string - URL has path.

• url string has port integer - URL has port.

• url string has query string - URL has query.

• url string has scheme string - URL has scheme.

• url string has user string - URL has user.

• url string is valid - Validate URL.

12 Chapter 3. Assertions

CHAPTER 4

Running Tests

4.1 The Concise CLI

Concise comes with a CLI that acts as a wrapper for the original phpunit command. You may use all the available
options of phpunit, however the concise executable offers a few more and has a much nicer result printer.

Likewise you can still run pure concise tests through the phpunit runner. Which is handy for existing CI systems.

4.2 Continuous Integration (CI)

The default result printer will likely not work so well with your CI and other non-interactive systems. There are several
solutions for this;

1. You may continue to use the phpunit executable and printer which will work exactly like you expect it to.

2. There is an option for concise to use an alternate printer used for CI: --ci. This will hide the progress bar and
only update progress line no more than once each percentage.

The advantage of this over the traiditional phpunit executable is you will be able to see failures as they happen,
rather than waiting till the end of the run.

13

concise Documentation

14 Chapter 4. Running Tests

CHAPTER 5

Mocking

5.1 Creating Mocks

There are three types of mocks available:

• Normal mocks (or simply mocks) define the behavior for every method you expect to interact with. If you test
interacts with any method other than what you have explicitly stated an exception will be thrown.

• Nice mocks work like the original object where if you don’t specify a given action for a method it will perform
as if the mock didn’t exist (pass through to the original method).

• Partial mocks create a mock from an already existing object. This means you can add custom rules to an object
that already contains some arbitrary state.

5.1.1 Normal Mocks

$this->mock('\My\Class')
->expect('myMethod')->once()->andReturn(123)
->stub('myOtherMethod')->andThrow(new \Exception('Uh-oh!'));
->get();

The class you are mocking must exist. Either already loaded or able to be loaded through the class loader(s). This is
not a limitation because concise does this for safety. If you want to create a mock but you do not need to inherit from
another class then you can leave the class name out and a mock will be created from a \stdClass:

$this->mock()
->expect('myMethod')->andReturn(123)
->get();

This type of mock does not invoke the constructor since plain mocks are supposed to be totally hollow and the con-
structor could potentially setup an unexpected state or call methods that would not have actions associated with them.

15

concise Documentation

5.1.2 Nice Mocks

Nice mocks work like the original object where if you don’t specify a given action for a method it will perform as if
the mock didn’t exist (pass through to the original method).

$this->niceMock('\My\Class')
->...
->get();

5.1.3 Partial Mocks

Partial mocks create a mock from an already existing object. This means you can add custom rules to an object that
already contains some arbitrary state.

$calculator = new Calculator();
$calculator->setMemory(10);

$mock = $this->partialMock($calculator)
->get();

$mock->addToMemory(20);
$mock->getMemory(); // 30

5.1.4 Constructors

If you are mocking a class with a constructor you can provide the constructor arguments as a second parameter:

class MyClass
{

public function __construct($number, $string) {}
}

$this->mock('\My\Class', array(123, 'foobar'))
->...

Or you can disable the original constructor:

$this->mock('\My\Class')
->disableConstructor()
->...

Note: Constructors are always run by default, even in normal mocks (which have all methods stubbed off). The reason
for this is even in a normal mock you may want the constructor to set up the state of the object, whilst leaving you
with the ability to turn this off with disableConstructor().

5.1.5 Cloning

If you need to disable the __clone() of the original class you can:

$this->niceMock('\My\Class')
->disableClone()
->...

This will stub off the __clone() so that it does nothing.

16 Chapter 5. Mocking

concise Documentation

5.1.6 Programmatically Building Mocks

You would have noticed that all mock definitions end with get() which compiles the rules into the actual mock for
use. If you try to use the object before then you will be talking to the MockBuilder instance.

This allows you to generate mocks programmatically:

public function createMockForCalc($expectsAdd = false)
{

$mock = $this->mock('\My\Calculator');
if ($expectsAdd) {

$mock->expects('add');
}
else {

$mock->stub('add');
}
$mock->andReturn(8);
return $mock->get();

}

Conversely, you may use get() multiple times to generate different classes with the same rules:

$mockTemplate = $this->mock()
->stub(['add' => 8]);

$mock1 = $mockTemplate->get();
$mock2 = $mockTemplate->get();

echo get_class($mock1) . " " . get_class($mock2); // stdClass_abd1240f stdClass_
→˓4432eba7

5.1.7 Changing the Class Name and Namespace of a Mock

The name of your class will be generated automatically to be unique, however if you want to name your class some-
thing specific you can specify this:

$mock = $this->mock('\My\Calculator')
->setCustomClassName('Calc')
->get();

echo get_class($mock);

// My\Calc

If the class name you specify does not contain a namespace then it will be placed into the same namespace as the
original class you are mocking. However, you can change the namespace completely by specifying the fully-qualified
class:

$mock = $this->mock('\My\Calculator')
->setCustomClassName('Secret\Location\Calc')
->get();

echo get_class($mock);

// Secret\Location\Calc

Or even move the class into the global namespace by preceding the class name with a backslash:

5.1. Creating Mocks 17

concise Documentation

$mock = $this->mock('\My\Calculator')
->setCustomClassName('\Calculator')
->get();

echo get_class($mock);

// Calculator

5.2 Verifying Mocks

All mocks are automatically asserted (checking that all the requirements have been fulfilled) at the end of each test
case.

5.2.1 Manually Verifying Mocks

Sometimes you may want or need to verify them before the end of the test. For example:

public function testMock()
{

$mock = $this->mock('MyClass')
->expect('myMethod')
->get();

// ... do some stuff
$this->assertMock($mock);

}

In the example above the mock will be asserted on the spot and cause the same failure if any requirements are no
fulfilled, however it does some other things to the mock:

• A mock can only be asserted once, that means that since we are validating it here it will not be validated again
when the test ends, and;

• Validating a mock more than once (calling assertMock()) more than once on the same mock will yield an
error.

5.3 Exposing

5.3.1 Methods

Exposing a method will simply make its visibility public this does not interfere with any actions behavior of the
method:

class MyClass
{

protected function foo()
{

return 'bar';
}

}

18 Chapter 5. Mocking

concise Documentation

$mock = $this->niceMock('MyClass')
->expose('foo')
->get();

$mock->foo();

If you need to expose several methods there is also a variety of ways this can be done:

$mock = $this->niceMock('MyClass')
->expose('foo')
->expose('bar')
->get();

$mock = $this->niceMock('MyClass')
->expose(['foo', 'bar'])
->get();

$mock = $this->niceMock('MyClass')
->expose('foo', 'bar')
->get();

Some caveats:

• The method you are exposing must exist, but it doesn’t have to be protected. Exposing a public method
is allowed but would have no effect.

• You cannot expose a private method. If you try you will get an exception.

5.3.2 All Methods

In some cases you may want to expose all the non-public methods in a mock. This is generally unwise because your
testing code should ideally only use the public API provided by the objects and services that you are testing.

$mock = $this->niceMock('MyClass')
->exposeAll()
->get();

$mock->secretMethod();

exposeAll() will actually retrieve the methods available on the object and promote any method that is not final
or private to a public visibility. See Mocking Final Classes and Methods for more information.

5.3.3 Properties

In some case you may also want to get or set properties on an object that do not have a public visibility.

class MyClass
{

protected $value = 'foo';
}

public function testValueIsFoo()
{

$myClass = new MyClass();
$this->assert($this->getProperty($myClass, 'value'))->equals('foo');

}

5.3. Exposing 19

mocking-limitations.html#final-classes-and-methods

concise Documentation

The above will work for all visibilities of a property.

Likewise you can use the setProperty method provided by Concise\Core\TestCase:

public function testValueIsBar()
{

$myClass = new MyClass();
$this->setProperty($myClass, 'value', 'bar');
$this->assert($this->getProperty($myClass, 'value'))->equals('bar');

}

private properties are attached to a specific class. Therefore a parent and child class can contain private instance
variables by the same name that are completely independent.

class A
{

private $value = 'foo';
}

class B extends A
{

private $value = 'bar';
}

public function testPrivates()
{

$object = new B();
$parent = get_parent_class($object);

$this->getProperty($object, 'value'); // 'bar'
$this->getProperty($object, 'value', $parent); // 'foo'

$this->setProperty($object, 'value', 'baz'); // B::$value is set.
$this->setProperty($object, 'value', 'baz', $parent); // A::$value is set.

}

Concise will automatically determine which class in the hierarchy contains the property to be set if no explicit class
name is provided. If multiple classes contain the same property the most child class is used.

When an explicit class is provided that class is always used whether the property exists on that class or not.

5.4 Stubbing

Stubbing is the act of changing the return value or associated action of a method when it is invoked (the basic principle
of a mock). You are not specifing any expectation so the stubbed method may be called zero or more times:

$calculatorMock = $this->mock('\Calculator')
->stub('add')->andReturn(8)
->get();

$calculatorMock->add(); // returns 8

If you only want to stub a method to return a value then you can use the array version to specify one or more stubs:

20 Chapter 5. Mocking

concise Documentation

$calculatorMock = $this->mock('\Calculator')
->stub(['add' => 8])
->get();

Concise allows for all the same rules with static methods with exactly the same syntax.

5.4.1 Setting the Same Actions on Multiple Methods

You can set actions on multiple methods at the same time by specifying them in the same clause like:

$calculatorMock = $this->mock('\Calculator')
->stub('add', 'subtract')->andReturn(0)
->get();

In the above example both add and subtract will return 0 when called. It is a shorter way of writing:

$calculatorMock = $this->mock('\Calculator')
->stub('add')->andReturn(0)
->stub('subtract')->andReturn(0)
->get();

// or

$calculatorMock = $this->mock('\Calculator')
->stub(['add' => 0, 'subtract' => 0])
->get();

5.5 Expectations

Expectations require some criteria to be fulfilled during the test. This may be that a method is called a specified amount
of times:

$calculatorMock = $this->mock('\Calculator')
->expect('add')->once()->andReturn(8)
->get();

The number of exptected times may be one of:

• never() - fail if this method is called.

• once() - must be exactly once.

• twice() - must be called exactly twice.

• times(int) - exact number of times.

All method expectations must have an action except in the case of never().

Stubs and expectation share the same commonality when it comes to actions when the method is called.

For convenience there is also an expects method that performs exactly the same way.

5.5. Expectations 21

concise Documentation

5.5.1 Setting the Same Expectations on Multiple Methods

Like stubbing, you can set requirements on multiple methods at the same time by specifying them in the same clause
like:

$calculatorMock = $this->mock('\Calculator')
->expects('add', 'subtract')
->get();

In the above example both add and subtract will be expected to be called, it is a shorter way of writing:

$calculatorMock = $this->mock('\Calculator')
->expects('add')
->expects('subtract')
->get();

Likewise, an action or requirement will be applied to all of the methods in the clause like:

$calculatorMock = $this->mock('\Calculator')
->expects('add', 'subtract')->twice()->andReturn(0)
->get();

add and subtract will be each have to be called twice and will return 0.

5.5.2 Expecting Arguments

Stubs and expectations may have an additional with() clause:

$calculatorMock = $this->mock('\Calculator')
->stub('add')->with(3, 5)->andReturn(8)
->get();

$calculatorMock->add(3, 5); // returns 8

You may specify more than one with() condition to handle different scenarios:

$calculatorMock = $this->mock('\Calculator')
->stub('add')->with(3, 5)->andReturn(8)

->with(2, 7)->andReturn(9)
->get();

When you are using with() you cannot specify the number of expected calls for a method, but rather you must
specify the number of times for each with() condition:

$calculatorMock = $this->mock('\Calculator')
->expects('add')->with(3, 5)->twice()

->with(2, 7)
->get();

In the example above add(3, 5) must be invoked twice and add(2, 7) must be invoked once (the expects
clause will default to once).

5.5.3 Ignoring Parameter Values

Sometimes you only need to restrict some of the incoming paramter values, in this case there is a ANYTHING constant
provided by Concise\Core\TestCase:

22 Chapter 5. Mocking

concise Documentation

$calculatorMock = $this->mock('\Calculator')
->expects('add')->with(3, self::ANYTHING)
->get();

5.6 Actions

5.6.1 andDo(callback)

$this->mock()
->stub('myMethod')->andDo(function() {

echo "myMethod() was called.";
}))
->get();

This can also be used as a way to handle state that might be too complicated for the mocking engine:

$calledOddTimes = false;
$this->mock()

->stub('myMethod')->andDo(function() use (&$calledOddTimes) {
$calledOddTimes = !$calledOddTimes;

}))
->get();

$this->assert($calledOddTimes)->isTrue;

andDo will pass through arguments:

$mock = $this->mock('MyClass')
->expect('foo')->andDo(function ($a, $b) {

echo $a + $b;
})
->get();

$mock->foo(3, 5);

// prints:
// 8

5.6.2 andReturn(value)

Return value where value can be of any type.

You may also provide more than one argument to specify multiple resturn values:

$mock = $this->mock()
->stub('myMethod')->andReturn('foo', 123)
->get();

$mock->myMethod(); // 'foo'
$mock->myMethod(); // 123

When using multiple return values the method can not be called more times than you have return values for - otherwise
an exception is thrown.

5.6. Actions 23

concise Documentation

5.6.3 andReturnCallback(callback)

Return the value returned by a callback function.

$mock = $this->mock()
->stub('myMethod')->andReturnCallback(function () {

return 'foo';
})
->get();

$mock->myMethod(); // 'foo'

The return value is evaluated when the invocation is made, so you can return different values for each invocation.

An optional Concise\Mock\InvocationInterface is passed through as the first and only argument to gain
insight about the invocation:

$mock = $this->mock()
->stub('myMethod')->andReturnCallback(

function (InvocationInterface $invoke) {
return $invoke->getInvokeCount();

}
)
->get();

$mock->myMethod(); // 1
$mock->myMethod(); // 2

You can also access the invocation arguments:

$mock = $this->mock()
->stub('myMethod')->andReturnCallback(

function (InvocationInterface $invoke) {
return $invoke->getArgument(1);

}
)
->get();

$mock->myMethod('foo', 'bar'); // bar

5.6.4 andReturnProperty(propertyName)

To return the value of a property (of any visibility) when a method is invoked you can use andReturnProperty():

class MyClass
{

protected $hidden = 'foo';

public function myMethod()
{

return 'bar';
}

}

$mock = $this->mock()
->stub('myMethod')->andReturnProperty('hidden')
->get();

$mock->myMethod(); // foo

24 Chapter 5. Mocking

concise Documentation

5.6.5 andReturnSelf()

Return the mock instance (return $this). This is useful when you are mocking classes that using the chaining
principle with methods.

5.6.6 andThrowException(exception)

Throw the exception when the method is called.

$this->mock()
->stub('myMethod')->andThrow(new \Exception('Uh-oh!'))
->get();

5.7 Properties

5.7.1 Setting a Single Property

You can set a properties when creating a mock using setProperty:

$mock = $this->niceMock('MyClass')
->setProperty('foo', 'bar')
->get();

$this->foo; // bar

5.7.2 Setting Multiple Properties

Setting multiple properties can be done with setProperties:

$mock = $this->niceMock('MyClass')
->setProperties([

'foo' => 'bar',
'bar' => 'baz',

])
->get();

$this->bar; // baz

When using setProperties it will add on the provided properties, not replace any previously set ones.

5.7.3 Other Information

Note: The property or properties are set after all other aspects of the mock have been setup. This means properties
that may be set as part of a partial mock will be overridden by the properties provided.

This feature was introduced in Multiverse (Release v1.7.0).

5.7. Properties 25

creating-mocks.html#partial-mocks
https://github.com/elliotchance/concise/releases/tag/v1.7

concise Documentation

5.8 Limitations

5.8.1 Traits

A trait cannot be mocked: Issue #66

5.8.2 Final Classes and Methods

Classes that are final will not be available to mock - an exception will be thrown if this is attempted.

This also applies to final methods.

26 Chapter 5. Mocking

https://github.com/elliotchance/concise/issues/66

CHAPTER 6

Syntaxes

6.1 What is a Syntax?

A syntax explains how an assertion gets translated for a matcher. A simple example is:

? equals ?

Which can be used in your test:

$this->assert(123)->equals(456);

So the syntax ? equals ? matches with two data items; 123 and 456.

Syntaxes can contain multiple words in a row:

? is greater than ?

Which can be used the same way as:

$this->assert(123)->isGreaterThan(456);

Syntaxes can contain as many data points as you need:

? is within ? of ?

$this->assert(1)->isWithin(0.2)->of(0.9);

And finally the syntax can start with a data element or not:

date ? is after ?

$this->assertDate($foo)->isAfter(time());

27

concise Documentation

6.2 Restricting Data Types

In a lot of cases it only makes sense for an assertion to work with known data types, for example:

? starts with ?

Here we are talking about strings. If someone were to put through a type that doesn’t make sense or cannot be
computed like:

$this->assert(new stdClass())->startsWith(true);

We would no doubt get some error, or at the very least the assertion would return an unreliable result.

There are two ways to mitigate this:

1. Do the type checking yourself in the matcher class by checking each data element for a sane type.

2. Use the syntax to specify the allowed types. This is must easer:

?:string starts with ?:string

Now concise will do the type checking for us. If we get some bad types it will throw an exception explaining the
error and never need to the call the actual matcher. It also means that your matcher class can guarantee that the data
elements taken in are both strings.

More complex requirements can be specified by separating with a comma:

?:int,float is greater than ?:int,float

Or, the reverse logic can be used to blacklist types (instead of whitelist) them:

?:!object is scalar

Will accept any type that is not an object.

6.3 Special Data Types

Due to PHP’s relaxed typing we want to be sure we don’t potentially run into this problem:

$this->assert('123')->isGreaterThan(1.23);

This will fail because '123' is a string, but it can also be treated as a number. So concise provides some special types
that do value checking as well:

?:number is greater than ?:number

We can now safely use number-like values:

$this->assert('123')->isGreaterThan(1.23); // numbers
$this->assert('foo')->isGreaterThan(1.23); // 'foo' is not a number

See the table below for all the supported types:

28 Chapter 6. Syntaxes

concise Documentation

Type Example values
int 123
integer
float 1.23
double
string "abc"
array array()
resource fopen('.', 'r')
object new \stdClass()
callable function () { }
regex "/foo/"
class "Concise\Core\TestCase"
number 123, 1.23, "12.3"
bool true

Separately from the type names in the table you may also specify specific classes:

?:DateTime is a date
?:\DateTime is a date

Subclasses are allowed.

6.3. Special Data Types 29

concise Documentation

30 Chapter 6. Syntaxes

CHAPTER 7

Modules

Modules contain assertions. If you need to create your own assertions you will likely want to create one or more
modules.

7.1 Creating a Module

Each module is a class that extends Concise\Module\AbstractModule and contains methods that are anno-
tated with the syntaxes they will match on, for example:

class UrlModule extends \Concise\Module\AbstractModule
{

public function getName()
{

return "URLs";
}

/**
* Validate URL.

*
* @syntax url ?:string is valid

*/
public function urlIsValid()
{

$this->failIf(
filter_var($this->data[0], FILTER_VALIDATE_URL) === false

);
}

}

Methods in a module can have zero or more @syntax annotations. You may use fail() or failIf(bool) to
throw failures. Any value returned will be returned as-is to be used in nested assertions.

31

syntaxes.html

concise Documentation

7.2 Loading a Module

Modules can be loaded through the ModuleManager like:

ModuleManager::getInstance()->loadModule(new MyModule());

Some things to note:

• It is safe to load the same module multiple times. Internally modules are identified by their class name so loading
the same module will be ignored.

• Once modules are loaded into the ModuleManager they remain there for the entire run. If you had a boot-
strap file for your test suite it would be a good idea to load your modules here, otherwise putting them in the
appropriate test cases is fine too.

7.3 Testing Modules

Use the Concise\Module\AbstractModuleTestCase when testing modules:

class MyModuleTest extends AbstractMatcherTestCase
{

public function setUp()
{

parent::setUp();
$this->module = new MyModule();

}

public function testIntegerIsAnInteger()
{

$this->assert(123)->isAnInteger;
}

/**
* @expectedException @expectedException \Concise\Core\DidNotMatchException

*/
public function testFloatIsNotAnInteger()
{

$this->assert(123.0)->isAnInteger;
}

}

7.4 IDE and Code Completion

Once modules are loaded in (as described in Loading a Module) all functionailty will work as expected. However, to
get code completion in your favourite IDE you will need to refresh the BaseAssertions that the IDE has used to pick
up the known modules.

Bundled with concise is a command called concise-init that will do just that. It is safe to run this as frequently
as you need.

Note: Modules must be loaded in your bootstrap file defined in the XML configuration.

32 Chapter 7. Modules

https://phpunit.de/manual/current/en/appendixes.configuration.html

concise Documentation

By default the original BaseAssertions.php is modified. However, there are some cases where you want this
file to be located somewhere else. To allow this you can set the environment variable CONCISE_BASEASSERTIONS
to another file.

export CONCISE_BASEASSERTIONS=/tmp/BaseAssertions.php

Note: You will need to put this file somewhere your IDE will index but should not be committed to your application
repository. A temporary build directory containing other generated content that is ignored by your version control is
common.

7.4. IDE and Code Completion 33

concise Documentation

34 Chapter 7. Modules

CHAPTER 8

Integrations

8.1 Pho

Pho is a BDD test framework for PHP, inspired by Jasmine and RSpec.

The concise command-line runner supports running Pho tests without any modification of the specs themselfs:
However, you must setup the correct test suite loader class in your phpunit.xml:

<phpunit
...
testSuiteLoaderFile="src/Concise/Extensions/Pho/PhoTestSuiteLoader.php"
testSuiteLoaderClass="Concise\Extensions\Pho\PhoTestSuiteLoader">

As far as I’m aware both of these need to be set and that can only be done through the XML configuration and not the
CLI interface. Below it highlights some of the features that do not work for Pho through the XML configuration.

Running a single spec file:

vendor/bin/concise path/to/SomethingSpec.php

You may also load a whole directory of recursive specs:

vendor/bin/concise --test-suffix=Spec.php path/to/spec

Note: In this case of loading a folder you must specify the --test-suffix otherwise PHPUnit’s internal directory
iterator will ignore any file that does not end with the default suffix Test.php.

One requirement of all PHPUnit test cases is that it knows how many total test cases exist before the test cases start
running. Concise will work out how many test cases (designated by the it()) are in the file when it is loaded without
having to execute the test suite.

Using other test result formats:

vendor/bin/concise --log-junit junit.xml --test-suffix=Spec.php path/to/spec

The entire Pho test suite is run under concise as part of the main build system.

35

https://github.com/danielstjules/pho
https://en.wikipedia.org/wiki/Behavior-driven_development
http://jasmine.github.io
http://rspec.info
https://travis-ci.org/elliotchance/concise

concise Documentation

8.1.1 What Doesn’t Work

Due to the way PHPUnit loads in test cases into a static context you cannot use the same Pho test loader with the
phpunit command. Concise must override chunks of PHPUnit to allow the test cases to be loaded correctly.

The XML configuration file cannot be used to load the spec files and folders for the same reason. It would take a lot
more code to allow this to work. However, it could be fixed in the future. You should specify the spec folder in the
concise command line to trigger the correct loading of the test files.

Code coverage my not work as expected. I’m not sure why this is, please let me know if you get this working.

PHP 5.6 does work (it will report errors on failures) however the total test count is not applied correctly. See Pho on
5.6 not working.

8.2 PHPUnit

Concise is built on top of PHPUnit and all the features available in PHPUnit will work with concise.

Native features of PHPUnit (4.0 and above) that do not work as expected should be reported as a bug.

8.3 Other Frameworks

Concise can also be used by any other frameworks by simply instantiating and managing the
Concise\Core\TestCase yourself:

use \Concise\Core\TestCase;

class MyTinyTestSuite
{

protected $testCase;

public function __construct()
{

$this->testCase = new TestCase();
}

public function checkSomething()
{

$this->testCase->setUp();
$this->testCase->assert(3 + 5)->equals(8);
$this->testCase->tearDown();

}
}

Since Concise implicitly expects setUp() and tearDown() methods to be called at appropriate times but does not
enforce this behaviour - if you use it differently then it may do unexpected things.

36 Chapter 8. Integrations

https://github.com/elliotchance/concise/issues/301
https://github.com/elliotchance/concise/issues/301

CHAPTER 9

Changelog

The changelog is maintained via Github releases.

37

https://github.com/elliotchance/concise/releases

	Installation
	Requirements
	Composer

	Writing Tests
	Simple Example
	Verify vs Assert

	Assertions
	Arrays
	Basic
	Booleans
	Date and Time
	Exceptions
	Files
	Hashing (Cryptography)
	Numbers
	Objects and Classes
	Regular Expressions
	Strings
	Types
	URLs

	Running Tests
	The Concise CLI
	Continuous Integration (CI)

	Mocking
	Creating Mocks
	Verifying Mocks
	Exposing
	Stubbing
	Expectations
	Actions
	Properties
	Limitations

	Syntaxes
	What is a Syntax?
	Restricting Data Types
	Special Data Types

	Modules
	Creating a Module
	Loading a Module
	Testing Modules
	IDE and Code Completion

	Integrations
	Pho
	PHPUnit
	Other Frameworks

	Changelog

